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1. INTRODUCTION

In this paper I am concerned with two results. First, I provide an easily
verifiable sufficient condition for topological chaos which can be satisfied
when the well-known Li�Yorke [9] condition is not satisfied. Second,
I apply this result to a model of endogenous growth with externalities
studied by Boldrin et al. [5] (referred to as BNSY [5] below) and show
how it can be used to establish the existence of chaotic equilibrium paths
in that framework. Let me elaborate somewhat on each result below.

For one-dimensional dynamical systems, the Li�Yorke criterion (equiv-
alently, the condition that there exists a period-three cycle) is a sufficient
condition for topological chaos (see Section 2 for the relevant definitions).
While it is by no means necessary, it is widely used to exhibit topological
chaos because it remains the easiest criterion to verify. However, for
applications in which one knows that the dynamical system does not have
a period-three cycle, it is not clear what easily verifiable criterion one could
check to show the existence of topological chaos.

With this difficulty in applications in mind, we develop below (in Section
2b) a sufficient condition for topological chaos (Proposition 2.3), when the
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law of motion of the dynamical system is a unimodal map (which figures
prominently in the mathematical literature on chaos in one dimension).
For such maps, it is easy to calculate the (unique interior) fixed point, and
it is also fairly straightforward to compute the (first three) iterates of the
modal point (the point at which the maximum is attained) of the map. Our
criterion is phrased in terms of only these values and should be simple to
verify.

The paper [5] develops a model of endogenous growth with externalities,
in which the relevant Ramsey�Euler conditions (together with the equi-
librium-under-externality condition) yield a first-order nonlinear difference
equation in the growth rate of capital. Thus, if there is an equilibrium path,
then its growth rate must obey this difference equation. However, a solution
path of the difference equation need not yield an equilibrium path, unless
a transversality condition can be verified. Thus a central task in their paper
is to make sure that the paths generated by the dynamical system satisfy
the transversality condition and are therefore actually equilibrium paths.

In general, the transversality condition, being an asymptotic condition,
cannot be checked numerically (using a computer, for example). To
elaborate, it can be checked numerically on periodic paths (although for
paths with very long periods one can run into memory problems on a com-
puter). It may even be checked on paths which are asymptotically periodic
(by using a combination of numerical and obvious analytic methods).
However, it cannot be checked numerically on paths which are asymptoti-
cally aperiodic, because the ``transversality term'' will have to be calculated
for an infinity of periods. Since asymptotically aperiodic behavior is the
essence of chaotic paths, the condition cannot be checked numerically to
establish the existence of chaotic equilibrium paths.

BNSY [5] report values of the relevant transversality term for long (but
finite) time periods. These values suggest that the transversality condition
ought to be satisfied. I verify analytically that the transversality condition
is satisfied, thereby validating their simulation results.

More precisely, I establish conditions on the values of the parameters
of this endogenous growth model under which (i) every solution of the
(above-mentioned) nonlinear difference equation corresponds to an equi-
librium and, simultaneously, (ii) the dynamical system exhibits topological
chaos.

Of these, the claim in (ii) above is verified by showing that, under these
restrictions on the parameter values, the result of Proposition 2.3 can be
directly applied.

Establishing the claim in (i) above is harder. Basically, one has to obtain
some ``control'' over the behavior of the product of the relevant ``growth
factor'' (*'+:

t ) in relation to the discount factor ($) as the time period (t)
becomes large. This, in turn, entails keeping track of ``return times,'' that is,
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the time spent in the region where the growth factor exceeds the reciprocal
of the discount factor, before it returns to the region where the growth
factor is smaller than the reciprocal of the discount factor, and the behavior
of the product of terms [$*'+:

t ] in each of these regions over these time
intervals.

2. TOPOLOGICAL CHAOS

2a. Definitions

Let X be a compact interval in R, the set of reals. Let f : X � X be a
continuous map of the interval X into itself. The pair (X, f ) is called a
dynamical system; X is called the state space and f the law of motion of the
dynamical system.

We write f 0(x)=x and, for any integer n�1, f n(x)= f [ f n&1(x)]. If
x # X, the sequence {(x)=[ f n(x)]�

0 is called the trajectory from (the initial
condition) x. The orbit from x is the set #(x)=[ y: y= f n(x) for some
n�0].

A point x # X is a fixed point of f if f (x)=x. A point x # X is called a
periodic point of f if there is k�1 such that f k(x)=x. The smallest such k
is called the period of x. (In particular, if x # X is a fixed point of f it is
periodic with period 1). If x # X is a periodic point with period k, we also
say that the orbit of x (or trajectory from x) is periodic with period k.

The dynamical system (X, f ) is called turbulent2 (see Fig. 1) if there exist
points a, b, c in X such that

f (b)= f (a)=a, f (c)=b, and either a<c<b or b<c<a.

(2.1)

To study the nature of trajectories which are not periodic, we define a
``scrambled'' set. A set S/X is called a scrambled set if it possesses the
following two properties:

(i) If x, y # S with x{ y, then

lim sup
n � �

| f n(x)& f n( y)|>0 and lim inf
n � �

| f n(x)& f n( y)|=0.
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FIGURE 1

(ii) If x # S and y is any periodic point of f,

lim sup
n � �

| f n(x)& f n( y)|>0.

Thus trajectories starting from points in a scrambled set are not even
``asymptotically periodic.'' Furthermore, for any pair of initial states in the
scrambled set, the trajectories move apart and return close to each other
infinitely often.

A finite set E/X is called (n, =)-separated (n=1, 2, ... and =>0) if, for
every x, y # E, x{ y, there is 0�k<n such that | f k(x)& f k( y)|�=. Let
s(n, =) denote the maximal cardinality of an (n, =)-separated set. We define

�=( f, X)=lim sup
n � �

(1�n) log s(n, =)
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and the topological entropy3 of f as

�( f, X)= lim
= � 0

�=( f, X).

We will say that the dynamical system (X, f ) exhibits topological chaos
if f has positive topological entropy.

2b. A Sufficient Condition for Topological Chaos

Given our definition of topological chaos,4 it would be useful to know
how it can be verified, given a dynamical system (X, f ). The following
characterization result, due to Misiurewicz [11], is extremely useful in this
respect, as it relates positive topological entropy of f to the existence of
certain periodic points of (X, f ).

Theorem 2.1. The dynamical system (X, f ) has positive topological
entropy if and only if it has a periodic point of period that is not a power
of 2.

In view of the above result, the well-known Li�Yorke theorem (stated
below) can be regarded as providing a sufficient condition for the existence
of topological chaos.

Proposition 2.1. Assume that there is some point x* in X such that

f 3(x*)�x*< f (x*)< f 2(x*) (or f 3(x*)�x*> f (x*)> f 2(x*)). (2.2)

Then

(i) for every positive integer k=1, 2, ..., there is a periodic point of
period k.

(ii) there is an uncountable scrambled set S/X.

The Li�Yorke criterion (2.2) is particularly appealing, because it is an easy
condition to verify. (See Fig. 2.) It can be checked that (X, f ) satisfies (2.2) if
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3 The formal definition of topological entropy was given by Adler et al. [1]. Bowen [6]
provided the more ``operational'' definition which we use here. In our context, the two definitions
are equivalent; see Bowen [7] for a proof.

4 It is known (see, for example, [4, Proposition 27, p. 143]) that if (X, f ) has a cycle of period
that is not a power of 2, then it has an uncountable scrambled set. Thus, in view of Theorem 2.1,
if (X, f ) exhibits topological chaos (that is, f has positive topological entropy), then it has an
uncountable scrambled set. However, it is also known (see [4, Example 29, p. 146 and Corollary
26, p. 142]) that a dynamical system (X, f ) can have an uncountable scrambled set, even though
the topological entropy of f is zero. This is the reason why one should not define topological chaos
in terms of an uncountable scrambled set.



and only if (X, f ) has a periodic point of period three. But, if we know that
a dynamical system does not satisfy (2.2) (equivalently, does not have a period-
three cycle), we do not know what simple criterion to check to show topologi-
cal chaos.5

We develop in this section a sufficient condition for topological chaos when
the law of motion of the dynamical system is a unimodal map. For such maps,
it is typically easy to calculate the (unique interior) fixed point and the (first
three) iterates of the modal point. Our condition is in terms of only these
values and should be easily verifiable.

Our result is based on the theory of turbulent dynamical systems.6 Suppose
(X, f ) is turbulent in the sense of (2.1). Consider the case where a<c<b.
Since f (a)=a<c<b= f (c), there exists a point q # (a, c) such that f (q)=c.
Then b= f 2(q) and a= f 3(q), so that f 3(q)<q< f (q)< f 2(q). Thus, (X, f )
has a period-three cycle by Proposition 2.1. We can summarize this as

Proposition 2.2. Let (X, f ) be a dynamical system, which is turbulent in
the sense of (2.1). Then (X, f ) has a period-three cycle.

Given Proposition 2.2, our strategy is to look for sufficient conditions on
(X, f ) under which the dynamical system (X, f 2) is turbulent. For if (X, f 2)
is turbulent, then (X, f ) has a period-three cycle or a period-six cycle; and
then, by Theorem 2.1, (X, f ) has positive topological entropy and therefore
exhibits topological chaos.

We will be concerned with a dynamical system (X, f ), where the state space,
X, will be an interval [a, b] of the real line, with 0�a<b<�. The law of
motion, f, will be a continuous function from X to X, with the following
properties:
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might try to obtain sufficient conditions to ensure that cycles of periods 5, 7, 9, 11, ... (odd periods
greater than three) occurred or, perhaps, to ensure that cycles of periods 6, 10, 14, ... (periods of
the form 2q where q is odd and greater than 1) occurred, and so on. Given that we are seeking
sufficient conditions which are easy to check, the most promising are cycles of period 5 or 6.
However, unlike the Li�Yorke condition which involves only three iterates of f, these involve five
or six iterates of f.

6 The reason for focusing on the concept of turbulence in seeking weaker sufficient conditions
for topological chaos of (X, f ) than the Li�Yorke condition is that if (X, f ) has a cycle of any odd
period greater than 1, then (X, f 2) is turbulent; while, if (X, f 2) is turbulent, then (X, f ) has a
period-6 cycle. That is, in terms of the Sarkovskii order, the turbulence of (X, f 2) sits between the
cycles of (X, f ) of odd period greater than 1 and the cycle of (X, f ) of period 6. Thus, obtaining
a sufficient condition for the turbulence of (X, f 2) is more appealing than that for a period-five
cycle, and ``almost as appealing'' as that for a period-six cycle, provided the condition is easy to
check (relative to a period five or six cycle). It turns out that we can check the turbulence of
(X, f 2) by computing the interior fixed point of f and just three iterates of the map f (not f 2) of
the modal point.



FIGURE 2

(i) There is m in (a, b), with f strict increasing on [a, m] and strictly
decreasing on [m, b].

(ii) f (a)�a, f (b)<b, and f (x)>x for all x in (a, m].

Define F=[ f : f is a continuous map from X to X, satisfying (i) and (ii)
above].

Note that g(x)=[ f (x)&x] is continuous and strictly decreasing on
[m, b], with g(m)>0 and g(b)<0. Thus, there is a unique value of x in (m, b),
call it z, such that g(z)=0; that is, z is an interior fixed point of f. Note that,
by (ii) above, f (x)>x for all x in (a, m], so there is no other interior fixed
point of f. (If f (a)=a, then a is also a fixed point of f, but it is at the boundary.
If f (a)>a, then z is the only fixed point of f.)
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We now look at the iterates of the modal value, m, under iterates of f. The
first iterate is easy to analyze. Clearly, by (ii) above f (m)>m, and since f maps
from X to X, f (m)�b. Since f is decreasing on [m, b] and z is in (m, b), we
have f(m)> f (z). To summarize, we have

m<z= f (z)< f (m)�b. (2.3)

Consider now the second iterate of m, under f; that is, f 2(m). Since f is
strictly decreasing on [m, b], and f (z) and f (m) are both in [m, b] with
f(z)< f (m), we must have f 2(z)> f 2(m). That is, we have f 2(m)<z, which
can be combined with (2.3) to give us

f 2(m)<z= f (z)< f (m)�b. (2.4)

Note that, in general, we cannot order the points m and f 2(m). Therefore, we
analyze two cases (depending on whether f 2(m)�m or f 2(m)<m) in turn.

In the case where f 2(m)�m, it is easy to see that the long-run dynamics
starting from any x in (a, b) is confined to the interval [m, f (m)]. And,
in this interval, we have f strictly decreasing. Thus, all trajectories must con-
verge to either the fixed point, z, or to a two-period cycle.

Consequently, the dynamics in this case cannot be chaotic.
Thus, a necessary condition for chaotic dynamics is

f 2(m)<m. (2.5)

Consequently, we maintain (2.5) in what follows. Combining (2.3), (2.4), and
(2.5), we have the following ordering of the points considered so far:

f 2(m)<m<z= f (z)< f (m)�b. (2.6)

We are now in a position to look at the third iterate of m under the map
f, that is, f 3(m). There are two pieces of information we can deduce about this
value. First, since f 2(m) is in the interval [a, m) and f is increasing on [a, m],
we have f 3(m)< f (m). Second, since f (x)�x on [a, m], we also have
f 3(m)� f 2(m). To summarize, we have

f 2(m)� f 3(m)< f (m). (2.7)

In general, we cannot order the points f 3(m) and m. If it turned out that
f 3(m)�m, then we must have a period-three cycle. To see this, note first that
if f 3(m)=m, then (m, f (m), f 2(m)) is a period-three cycle [using (2.5)].
Second, if f 3(m)<m, then we have f ( f 2(m))<m, while f (m)>m, so there is
some value, q, in ( f 2(m), m) such that f (q)=m. Then we have

f 3(q)= f 2(m)<q<m= f(q)< f (m)= f 2(q), (2.8)
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so that the Li�Yorke condition (2.2) is satisfied and we have a period-three
cycle.

We now show that a satisfactory theory can be developed under the weaker
condition

f 3(m)<z. (2.9)

In words, the condition is that the third iterate of the modal point (m) under
the map f is less than the interior fixed point (z). This is weaker than assuming
f 3(m)�m, since m<z, by (2.3).

Let us state clearly what we will show below. Under (i), (ii), the necessary
condition of chaos (that is, (2.5)), and Condition (2.9), we will demonstrate
that (X, f 2) is turbulent.

We define, sequentially, four values, P, Q, R and S in [a, b], and using
those we verify that the dynamical system (X, f 2) is turbulent. Denote the
restriction of f to [a, m] by U; then U is an increasing function. Denote the
restriction of f to [m, b] by V; then, V is a decreasing function.

By (2.5), we have f 2(m)<m, so that f 2(m) belongs to [a, m). By (2.9), we
have f ( f 2(m))<z, so we have U( f 2(m))<z. Also, f (m)>z by (2.3), so
that U(m)>z. Thus, there is some P in ( f 2(m), m) such that f (P)=U(P)=z.

By (2.3), we have m<z< f (m)�b, so that z and f (m) both belong to
[m, b]. Thus, V(z)= f (z)=z>m>P, and V( f (m))= f 2(m)<P. So, there
is some value Q in (z, f (m)) such that f (Q)=V(Q)=P.

As noted above, z and f (m) both belong to [m, b], with z< f (m). So, by
(2.3), we have V(z)= f (z)=z>m. Also, by (2.5), V( f (m))= f 2(m)<m.
Thus, there is some R in (z, f (m)) such that f (R)=V(R)=m. Since
V(Q)=P<m=V(R) and V is decreasing, we must have Q>R.

Note, finally, that f 2(R)= f (m)>Q and f 2(z)=z<Q. Thus, there is
some S in (z, R) such that f 2(S)=Q. We can summarize the ordering of
all the relevant values as follows:

a� f 2(m)<P<m<z<S<R<Q< f (m)�b. (2.10)

Furthermore, the values are related by the equations

f (Q)=P, f (P)=z, f (R)=m, and f 2(S)=Q. (2.11)

Define h= f 2; then h is a continuous map from X to X. Also, we have
the triple of values, (z, S, Q), satisfying (i) z<S<Q (using (2.10)) and (ii)
h(Q)=z=h(z) and h(S)=Q (using (2.11)). Thus, the dynamical system
(X, h) is turbulent.
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We summarize our result, based on the above analysis, as follows.

Proposition 2.3. Let (X, f ) be a dynamical system, with X=[a, b]/R,
where 0�a<b<� and f # F. If f satisfies f 2(m)<m and f 3(m)<z then
(X, f 2) is turbulent and (X, f ) exhibits topological chaos.

2c. An Example

This example is based on a model of growth through cycles due to
Matsuyama [10]. The state space, Y, is the set of nonnegative reals, and
the law of motion, ,, is described by two parameters, G and _, both of
which belong to (1, �). Following Matsuyama, it is convenient to define
the parameter % as follows: %=(1&(1�_))1&_. Thus, as _ varies from 1 to
�, % varies from 1 to e. The law of motion, ,, can be defined in terms of
G, _, and % as

,(k)=Gk1&(1�_) for k in [0, 1]

,(k)=Gk�[1+%(k&1)] for k in (1, �).

Thus, the map, ,, is ``tent-like,'' with a maximum and a kink at k=1,
increasing on [0, 1], and decreasing on (1, �). (See Fig. 3.) The interesting
phenomenon of growth with fluctuations arises when the parameters satisfy
the restriction 1<G<%&1, so we maintain this restriction in what follows.

We note that ,(1)=G and define H=,(G)=G2�[1+%(G&1)]. Then,
given the restriction 1<G<%&1, we have H<1. The interval X=[0, G]
is an invariant set in the sense that ,(X)/X. Thus, if k is once in X, then
all iterates of k (under the map ,) are in X. And, if k is in (G, �), then
in the next time period it is in X. Thus, all the long-run dynamics are
confined to the interval X, the other states in Y being transient. Define f to
be the restriction of , to X; then (X, f ) is a dynamical system and we can
study whether this generates topological chaos.

The dynamical system (X, f ) satisfies conditions (i) and (ii) of Section
2b, with the modal point m=1 and G>1. Further, as verified above when
G<%&1, we have ,(G)<1, so that ,2(1)<1=m, and the necessary con-
dition of chaos (given by (2.5) in Section 2b) is also satisfied. Matsuyama
[10] notes that (X, f ) cannot have a period-three cycle. We show, by
verifying condition (2.9) of Section 2b that, nevertheless, (X, f ) can exhibit
topological chaos.

The unique interior fixed point of ,, call it z, is easy to calculate. It
satisfies the equation

Gz�[1+%(z&1)]=z, (2.12)
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so that z=1+[(G&1)�%]. Also, we have ,(1)=G and ,2(1)=,(G)=
G2�[1+%(G&1)]. So, we get ,3(1)=G(G2�[1+%(G&1)])1&(1�_). Thus,
condition (2.9) reduces to the inequality

G(G2�[1+%(G&1)])1&(1�_)<1+[(G&1)�%]. (2.13)

It can be verified that (2.13) holds if _ is sufficiently large (% is sufficiently
close to e), and simultaneously G is sufficiently close to 1. We provide here a
numerical example. Choose _=50 and G=1.01. Then (1&(1�_))=0.98 and
%=1�(0.98)49=2.6910532. With these values, the left-hand side expression in
(2.13) is 1.0034352, while the right-hand side expression in (2.13) is 1.003716.
Thus the inequality in (2.13) does hold for these values of the parameters (see
Fig. 3), and (X, f ) exhibits topological chaos by Proposition 2.3.

FIGURE 3
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3. BASIC PROPERTIES OF AN ENDOGENOUS GROWTH MODEL

Our model is the two-sector model with externality that is used in [5].
There are two goods produced in two different sectors, the consumption
good and the investment good. Let ct and It be the amount of the con-
sumption good and that of the investment good that are produced in
period t. The consumption good is produced from both capital K1t and
labor L. The investment good is produced from capital K2t alone. Let kt be
the amount of the capital good that is available at time t. Then

K1t+K2t=kt . (3.1)

The initial amount of capital input is given by k0=k� >0. The economy is
also endowed with a fixed amount of labor L=1.

Externalities affect the production of the consumption good. Let et

denote the magnitude of this externality. The production function of the
consumption good sector (Sector 1) is

ct=e'�
t K :�

1tL
1&:� , (3.2)

where 0<:� <1 and '� >0. The production function of the investment good
sector (Sector 2) is

It=%K2t , (3.3)

where %>1. We assume full depreciation of the capital good, so that

kt+1=It . (3.4)

Let u denote the utility function of the representative consumer, and
assume that

u(c)=c1&_ where 0<_<1. (3.5)

Denote by $, 0<$<1, the discount factor of future utilities. Then, the
representative agent solves the following optimization problem. Given a
sequence of externalities [et]�

t=0 ,

max
[c1 , kt , K1t , K2t , It]t�0

:
�

t=0

$tu(ct), (3.6)

such that

ct=e'�
t K :�

1t , It=bK2t , K1t+K2t=kt ,

kt+1=It for t�0, and k0=k� .
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The level of the externality generated in period t is equal to the amount of
the capital good employed in that period by the two sectors; that is,

et=kt . (3.7)

Since ct=e'�
t [(%kt&kt+1)�b]:� , the above optimization problem (3.6)

gives rise to

max
[kt]t�0

:
�

t=0

$te'
t (%kt&kt+1):

s.t. k0=k� and 0�kt+1�%kt , for t�0, (3.8)

where '=(1&_) '� and :=(1&_) :� . We refer to a path of accumulation
[kt]�

0 as an equilibrium path if

(i) it solves the optimization problem (3.8) and

(ii) et=kt for t=0, 1, 2, ... .

We assume in what follows that 0<:<1 and '>(1&:).
We call a path [kt]�

0 satisfying k0=k� and 0<kt+1<%kt an interior
path (from k0=k� ). We call an interior path [kt]�

0 a balanced growth path
if it is in equilibrium and kt+1 �kt=* for t=0, 1, ... . For an interior path
[kt]�

0 , define *t=(kt+1 �kt) for t�0; then, 0<*t<% for t�0.
An interior path [kt]�

0 satisfies the Ramsey�Euler equations if

e'
t (%kt&kt+1):&1=$%e'

t+1(%kt+1&kt+2):&1 for t�0. (3.9)

Thus, an interior path satisfying the Ramsey�Euler equation, and the
condition et=kt , for t�0, must satisfy a difference equation in the single
variable, *t , as follows:

(%&*t+1)=($%)[1�(1&:)](%&*t)(*t)
[['�(1&:)]&1] for t�0. (3.10)

Denoting (%&*t) by zt for t�0, (3.10) can be transformed into the recursive
system, zt+1= f (zt), where f is a map from X=[0, %] to R, given by

f (z)=Az(%&z);, (3.11)

with ;=['�(1&:)]&1, A=($%)[1�(1&:)]. Since '>(1&:), we have ;>0.
It is easy to check that the map, f, is unimodal on X, with f (0)= f (%)

=0. Specifically, the modal point (the point at which f attains a maximum
on X) is given by

m=%�(1+;). (3.12)
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Furthermore, f is strictly increasing on [0, m) and strictly decreasing
on [m, %].

The maximum value of the function, f (m), will be strictly less than % if

$1�(1&:)%;+[1�(1&:)]<(;+1) (;+1)�;;. (3.13)

Under the restriction (3.13), we have f (z) in (0, %) whenever z is in (0, %).
Thus, (X, f ) is a dynamical system, with f a map from X to X; further, if
z0 is in (0, %), then zt is in (0, %) for all t�0.

We can ensure that f (z)>z for all z in (0, m] if

$1�(1&:)%;+[1�(1&:)]>(;+1);�;;. (3.14)

We maintain the restrictions on the parameters expressed in (3.13) and
(3.14) in what follows, and we call it Condition 1. (This is a stronger condi-
tion than Condition 1 in [5].)

Condition 1.

(;+1);�;;<$1�(1&:)%;+[1�(1&:)]<(;+1) (;+1) ;;.

Since f (m)>m, while f (%)=0<%, there is some z� in (m, %), such that
f (z� )=z� . This z� is uniquely given by

z� =%&(1&A)1�;. (3.15)

Then z� corresponds to a steady-state equilibrium with growth factor
*=%&z� . One can ensure a growth factor exceeding 1 in such an equi-
librium by assuming that A<1. This restriction on the parameters is also
maintained in what follows, and we write it as Condition 2. (It corresponds
to Condition 2 in [5].)

Condition 2.

%<(1�$).

4. CHAOTIC EQUILIBRIUM DYNAMICS

In this section, we wish to identify restrictions on parameter values (of
the endogenous growth model of Section 3) under which (i) the dynamical
system (X, f ) exhibits topological chaos and (ii) any sequence [zt] generated
by the dynamical system (X, f ), starting with z0 in (0, %), corresponds to an
equilibrium path.
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Given Proposition 2.3 and the properties of (X, f ) already verified in
Section 3, (X, f ) will exhibit topological chaos (verifying (i) above) if the
parameter restrictions ensure that

f 2(m)<m and f 3(m)<z� . (4.1)

To verify (ii) above, we note that the basic relation between sequences
generated by the dynamical system (X, f ) and equilibrium paths is given
by the following result, which is just a restatement of Lemma 2 in [5].

Proposition 4.1. Let z0 belong to (0, %) and let [zt] be the sequence
generated by iterates of f, starting with z0 . Define k0=k and kt+1=
(%&zt) kt for t�0. Then [kt] is an equilibrium path from k if

:
�

t=0

$tk'&:
t <�. (4.2)

The condition (4.2) ensures that both the summability and the trans-
versality conditions are satisfied by [kt], so that it is an equilibrium path
from k (by Lemma 1 of [5]).

In order then to show that any sequence [zt] generated by the dynamical
system (X, f ), starting with z0 in (0, %), corresponds to an equilibrium path,
one has to show that the sequence [kt], associated with [zt] as in Proposition
4.1 above, automatically satisfies (4.2), under some suitable parametric restric-
tions. While such parametric restrictions can be found, the problem in
demonstrating chaotic equilibrium paths is to find restrictions which will ensure
that (4.1) and (4.2) are simultaneously satisfied.

We proceed as follows. In order to demonstrate clearly our approach to
the problem, we refrain from specifying (ranges of) numerical values to the
parameters at present and instead focus on relationships between the parameters
that make the method work.

To begin, let us assume that parameter restrictions have been found such
that the following condition holds:

f 2(m)<m< f 3(m)<z (E.0)

Note that (E.0) implies that (4.1) is satisfied. (We will provide a robust
numerical example in Section 5, verifying that this assumption is satisfied.)
Now, we try to find (additional) restrictions on the parameters such that
(4.2) will also be satisfied.

To this end, it is convenient to rewrite (4.2) in terms of the growth
factors of the capital stock sequence. For the [kt] sequence (generated by
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the [zt] sequence, as in Proposition 4.1 above), we have *t=(kt+1 �kt) and
*t=%&zt for t�0. Next, let us define, for t�0, &t=$1�(1&:)*;+[1�(1&:)]

t =
($*'+:

t )1�(1&:). Then, for t�1, we have

$tk'+:
t =k'+: `

t&1

s=0

& (1&:)
s . (4.3)

This means that in order to verify (4.2), we will need to study the dynamic
behavior of the sequence [&t] carefully.

Denote the interval [ f 2(m), f (m)] by I. Note that for y in [ f 2(m), m]
we have (by the inequality (3.14) of Condition 1) f ( y)> y� f 2(m), and for
y in (m, f (m)] we have f decreasing in this region, so that f ( y)� f 2(m).
Thus, for all y in I, f ( y)� f 2(m). Also, for all y in X, f ( y)� f (m), by
definition of m. Thus, for all y in I, we have f ( y) in I, and I is an invariant
set.

If z0 is in (0, f 2(m)), then zt will monotonically increase till it enters I,
and thereafter it will stay in I. If z0 is in ( f (m), %), then f (z0) is in
(0, f 2(m)), so that for t�1, zt will monotonically increase till it enters I,

FIGURE 4
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and thereafter it will stay in I. Thus, the long-run dynamics of zt is confined
to the invariant set, I.

We can split up the interval into three subintervals as follows. We have
f (z� )=z� > f 3(m) and f ( f (m))< f 3(m). So there is z$ in (z� , f (m)) such that
f (z$)= f 3(m). (See Fig. 4). This z$ is uniquely defined, since f is strictly
decreasing in the region (z� , f (m)). We now define I1=[ f 2(m), f 3(m)),
I2=[ f 3(m), z$), and I3=[z$, f (m)]. We also define, for future reference,
J2=[ f 3(m), z$] and J3=(z$, f (m)]. Note that I1 , I2 , and I3 are disjoint
intervals, with union I; similarly, I1 , J2 , and J3 are disjoint intervals with
union I.

Now, note that if y is in I1 or I2 , then f ( y)� f 3(m), so f ( y) cannot
belong to I1 . Consequently, if for some y$ in I, f ( y$) does belong to I1 , then
y$ must belong to I3 .

It also follows from this observation that if [zt] is generated by iterates
of f, starting with any z0 in (0, %), then there is some time period at which
zt is in [ f 3(m), f (m)].

This suggests the following line of analysis. Suppose that we can ensure
that the following two conditions are satisfied:

$1�(1&:)(%& f 3(m))[1�(1&:)]+;<1, (E.1)

[$1�(1&:)(%& y)[1�(1&:)]+;][$1�(1&:)(%& f ( y))[1�(1&:)]+;]<1

for all y in I3 . (E.2)

Then the condition (4.2) will be satisfied.
Let us explain why this is so. Given (E.1), let us denote $1�(1&:)(%&

f 3(m))[�(1&:)]+; by D1 . Given (E.2), the maximum of the expression
[$1�(1&:)(%& y)[1�(1&:)]+;][$1�(1&:)(%& f ( y))[1�(1&:)]+;] over the compact
interval I3 is less than 1; denote this value by D2 . Then D#max(D1 , D2)<1
and d=D(1&:)<1 also.

We know that the sequence [zt], generated by iterates of f and starting
from any z0 in (0, %), will enter [ f 3(m), f (m)] for some t. Let T be the first
time period when this happens (T can be zero). We now examine the
sequence [&t] for t�T, remembering that, since zT is in I, we have zt in
I for all t�T. Given (E.1), if zt is in [ f 2(m), f 3(m)], then &t�D1�D, so
&(1&:)

t �d<1. And, if zt is not in [ f 3(m), f(m)], that is, zt is in [ f 2(m), f 3(m)),
then zt&1 is in (z$, f (m)], and so by using (E.2) we have &t &t&1�D2�D
and (&(1&:)

t )(& (1&:)
t&1 )�d<1. This means that the term in (4.3) is dominated

by a sequence which decreases geometrically at the factor d<1. This last
statement requires elaboration, which we now provide.

Our objective is to evaluate products of &t of the form >T+N
t=T &t , where

N�1. In the set of time periods [T, T+1, ..., T+N], let n be the number
of periods in which zt is in I1 (n can be zero). It follows that for each of
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these t we have the preimage of zt (that is, zt&1) in J3 . (We can assert this
because we know that zT is not in I1 .) Further, the number of periods in
which zt is in J3 is either n or n+1. Specifically, it is n+1 if zT+N is in J3 ,
and it is n if zT+N is not in J3 . Thus, the remaining time periods (if any)
in the set [T, T+1, ..., T+N] must be spent in J2 . Thus, if 2n=N then the
product >T+N

t=T &t�D(N�2)+1 while if 2n<N then >T+N
t=T &t�Dn DN+1&2n

<D(N�2)+1, so that in all cases

`
T+N

t=T

&t�D (N�2)+1. (4.4)

Thus, denoting >T&1
t=0 & (1&:)

t by B, we have

`
T+N

t=0

& (1&:)
t �B d (N�2)+1. (4.5)

Then, using (4.3), we see that (4.2) is satisfied.

5. A NUMERICAL EXAMPLE

In Section 4 we showed that if we can specify restrictions on the param-
eter values (of the endogenous growth model of Section 3) such that (E.0),
(E.1), and (E.2) are simultaneously satisfied, then the endogenous growth
model will exhibit chaotic equilibrium paths. We now specify numerical
values of the parameters of the model under which (E.0), (E.1), and (E.2)
can be verified.

Let :=0.5, ;=5, %=1.59, $=0.6, and +=1. For these values of the
parameters, it is easy to calculate that (;+1);�;;=(6�5)5=2.48832,
$1�(1&:)%;+[1�(1&:)]=$2%7=9.248735, and (;+1) (;+1)�;;=6(6�5)5=
14.92992. Thus, Condition 1 is clearly satisfied. Also, %=1.59<1.66<
(1�$), so that Condition 2 is also satisfied.

We now enumerate the growth factor of the steady state, z� . This is given
by *=[1�($%)0.4]. We can calculate that $%=0.954 and ($%)0.4=0.981339658,
so that *=1.019015172, which is greater than 1, as predicted by Condition 2.

We turn, now, to the modal point and its iterates under the map, f. The
modal point, m, is [%�(;+1)]=0.265. The parameter, A, in the map, f, is
($%)2=0.910116. Thus, the first iterate of the modal point is f (m)=
Am(%&m)5=(0.910116)(0.265)(1.59&0.265)5=0.984967758#m1 .

The second iterate of the modal point f 2(m)= f (m1)=Am1(%&m1)5=
0.072679404#m2 . And the third iterate of the modal point f 3(m)= f (m2)
=Am2(%&m2)5=0.531979469#m3 . Note that f 2(m)<m and m< f 3(m)<z,
so (E.0) is satisfied.
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It is straightforward to verify that (E.1) is satisfied. Given that f 3(m)>0.53,
we have (%& f 3(m))<1.06 and so $1�(1&:)(%& f 3(m))[1�(1&:)]+;<(0.6)2

(1.06)7=(0.36)(1.5036)=0.541296<1.
Verifying (E.2) is somewhat more involved. We will show that the function,

h, from the set I to R++ , defined by

h( y)=(%& y)(%& f ( y)) for y in I, (5.1)

is bounded above by 1.3 on the set I3 .
Define z*=0.59. Then f (z*)=A(0.59)=0.5789903. Note that z*>z� =

0.5709848 and f (z*)> f 3(m)= f (z$), so that we must have z� <z*<z$.
Define J=[z*, f (m)]; note that I3 is a subset of J. We will, in fact, show
that h is bounded above by 1.3 on the larger set J.

The reason for working with J is, of course, that the boundary points of
this interval are easy to calculate. We can calculate h(z*)=(%& f (z*))=
1.05303156. Also, at y= f (m), we have h( y)=(%& f (m))(%& f 2(m))=
(0.605032242)(1.517320596)=0.918027882. At y=0.69, which is an interior
point of J, we have h( y)=(0.9)(%& f ( y))=(0.9)(1.219184066)=1.09726566.

We know that h attains a maximum on J. Denote by y* the point at
which h attains a maximum on J. By the above calculations, the maximum
cannot be at a boundary point. Thus, we must have h$( y*)=0. This yields
the equation

(%�A)=(%& y*)5 (7y*&%). (5.2)

Define g( y)=(%& y)5 (7y&%) for y in J. Then g$( y)=(%& y)4 (12%&42y)
for y in J, and since (12%&42y)�(12%&42z*)=19.08&42(0.59)=19.08
&24.78<0, g$( y)<0 for all y in J. This means that (5.2) has a unique
solution.

We now evaluate h( y*) as follows. We have h( y*)=(%& y*)(%& f ( y*))
= ( % & y*) ( % & Ay*(%& y*)5) = (%& y*) (% & Ay*(%�[A( 7y* & % ) ] ) ) =
%(%& y*)(6y*) (6y*&%)�(7y*&%)�%(%&z*)(6&%)�(7&%)=(1.59) (4.41)�
(5.41)=1.296099815<1.3. Thus, h( y)�1.3 on the set J and hence on the
set I3 , as we had claimed.

We can now see that for all y in I3 , [$1�(1&:)(%& y)[1�(1&:)]+;][$1�(1&:)

(%& f ( y))[1�(1&:)]+;]=$4(h( y))7�(0.6)4 (1.3)7=0.8132207<1, thus
verifying (E.2).

Remarks (i) It is shown in [5] that the steady state, z� , will be locally
unstable if

$[1�(1&:)]%[;+[1�(1&:)]]>(;+2);�;;. (5.3)

We note that (;+2);�;;=(7�5)5=5.37824, so (5.3) is satisfied in our
example. The restriction (5.3) is called Condition 3 in [5].
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(ii) We checked above that

f 2(m)<m (5.4)

for our example. The restriction (5.4) is called Condition 4 in [5].
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